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Improving Transportation Information Resilience: Error 
Estimation for Networked Sensor Data 

EXECUTIVE SUMMARY 

Reliable and resilient data serves as a critical foundation for almost all new mobility 
technologies in a modern transportation system, thus plays a significant role in improving the 
efficiency, safety, and ultimately sustainability of a transportation system. Despite of the 
importance of sensor data performance evaluation, research effort devoted to this subject is 
rather thin compared to studies that directly take sensor data as input. Most sensor health 
monitoring studies focused on identifying ‘bad’ sensors whose data should be discarded. The 
problem of estimating and correcting the systematic bias of sensor data has not been 
addressed, especially in the context of large-scale networked data pieces from heterogeneous 
sources.  

In this project, we fill the aforementioned critical gap - by combining data science and network 
modeling techniques, our method provides greater modeling flexibility to incorporate spatial 
correlation of networked data, which leads to a better estimation quality.  Main research steps 
include: 

• Model Creation: We have developed a mathematical model combining moment 
matching and traffic network models. Using synthesized data generated for networks 
with different graph properties (including orders, sizes, connectivities, etc.) and 
different flow patterns, we test the estimation quality of the proposed method using the 
basic knowledge of network flow balance. 

• Model testing and validation: Real-world traffic data and computer simulations were 
used for model testing and validation, including road segments and networks in urban 
congested areas (such as using PeMS data in Orange County and the San Francisco Bay 
Area). These networks can simulate urban corridors and generate large-scale and 
multiple types of traffic data. Note that since the true measurement errors are 
unknown, simple comparison between estimated and true systematic bias will not be 
possible. However, the estimated results may be used to provide information for 
inspection and maintenance activities.  

This research improves fundamental knowledge on transportation data analytics as well as the 
effective management of data and information infrastructure in transportation practice. The 
open-source computer program created from this project will be shared by the California 
Department of Transportation to facilitate knowledge transfer from academia to practice. 
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1. Introduction 

In modern transportation systems, reliable sensor data is heavily relied on to produce effective 
planning and operational strategies in coping with almost all-important issues, including road 
congestion, traffic safety, pollutant emission control and energy consumption. A major 
challenge pertaining to sensor data is to deal with corrupted data or even completely missing 
data that frequently and widely occurs in most established traffic monitoring systems. Many 
empirical case studies have evidenced that data conflicts and missing records exist in a large 
amount of road traffic sensors. For example, it was reported that about one third of the 
freeway sensors in PeMs (California Performance Measurements), a broadly referenced data 
system, were not working properly (Rajagopal and Varaiya, 2007). Quality control for archived 
data management systems (ADMS) has also been identified as a high-priority task 
recommended to the Federal Highway Administration (Turner, 2007). 

Research efforts devoted to traffic sensor data quality in the last few decades can be divided 
into two categories. The first one attempts to address the issues of assessing data quality and 
identifying completely malfunctioning sensors. It is usually referred to as sensor health problem 
and predominantly treated as a pure engineering task that merely requires traffic domain 
expertise. The second category focuses on remedying the corrupted data in a systematic 
manner using all available data. The solutions to these problems are usually data oriented and 
statistical learning based without fully considering traffic data structure. The literature suggests 
both the importance of having a solid statistical basis to infer sensor quality from a network 
perspective as well as the necessity of assimilating useful knowledge on data rectification. On 
account of those matters, this article spans over the two categories via developing a statistical 
inference approach for data quality assessment and reconstruction based on a transportation 
network model. 

Most existing works on sensor health problems focused on identifying completely 
malfunctioning sensors whose data should be directly discarded, but few paid attention to 
moderately malfunctioning ones whose data are significantly erroneous yet still endow useful 
information. The pioneer endeavors among them mainly depend on setting allowable range for 
observed values and checking consistency among volumes, occupancy and speeds. Over the 
years, studies following the same school of thoughts have evolved to include more complicated 
validity criteria combinations (Turochy and Smith, 2000, Hu et al., 2001, Chen et al., 2003, and 
Turner et al., 2004). Nowadays, they are still prevailing in practice due to its convenient 
implementation in a conventional database management system. The other branch of works 
leverages the mutual dependency of traffic data from closely located sensors and adjacent time 
intervals. Spatially, the correlation of traffic counts are modeled based on neighboring lane 
similarity (Dailey, 1993), upstream and downstream consistency (Nihan, 1997), macroscopic 
traffic flow conservation (Vanajakshi and Rilett,2004) and simply proximity in distance (Kwon et 
al., 2004). Recently, Sun et al. (2016) pointed out the limitation of earlier studies which did not 
fully exploit spatial correlations on the network level and proposed a new approach to identify 
malfunctioning sensors of all possible reasons whose data are supposed to be significantly 
inconsistent against data from others. This paper shares a similar network perspective in 
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defining spatial dependency but in a more flexible manner that requires much weaker 
assumption to establish. The major distinction of this work from previous studies in this area is 
the capability of telling the magnitude of data corruption and identifying partially 
malfunctioning sensors. This virtue is of evident practical value because it is beneficial for 
practitioners to be able to utilize information from those sensors to reconstruct traffic data. 

Till date, the majority of research efforts in the area of data remediation is to handle 
completely missing data on the basis of uncorrupted data from other sensors. In many cases, 
data imputation methods based on time-series analyses and machine learning approaches are 
applied only after all susceptible data from malfunctioning sensors have been completely 
removed. Li et al. (2014)’s review pointed out that traditional prediction methods using time 
series model such as ARIMA to map historical and future values of traffic data failed to fully 
utilize the observed data succeeding to missing data occurrence. Interpolation using spatially 
and temporally adjacent records is prevailing in highway agencies, but forcing counts to be 
close to each other may underestimate the traffic variation in the corresponding dimensions. A 
large body of recent literature utilizes learning algorithms in searching for a pattern of traffic 
data, including for example, Probabilistic Principal Component Analysis in Qu et al. (2009), 
Fuzzy C-means Clustering in Tang et al. (2015) and Deep Learning in Duan et al. (2016). To the 
best of our knowledge, though being diverse in terms of employed learning models, none of 
those studies considers the possibility of systematic errors in the observation datasets, which 
could potentially mislead the learning outcomes. 

According to Traffic Detector Handbook published by the US Federal Highway Administration 
(Klein et al., 2006), there exist different levels of sensor problems, ranging from most obvious 
ones such as zero call or constant call, to modest but less detectable errors, such as unbalanced 
sensitivity. Sensor data that are systematically deviated from the real traffic volume, out of the 
reasons such as counting neighboring lane traffic, missing motorcycles, more than one count 
for long vehicles, may still be valuable in revealing important information on the traffic flow 
that it is actually monitoring as well as on the other flows in the network. In order to take 
advantage of those sensors’ data, the health monitoring task is not only to pinpoint the 
malfunctioning detectors, but to measure their respective levels of sensor health. It is equally 
important to actually carry such obtained knowledge into the steps of reconstructing traffic 
flow. 

In this project, the health of a sensor is represented by its measurement error, which can be 
modeled mathematically and characterized by its inferred statistics. Measurement errors are 
usually divided into two components (Dunn, 1989). Systematic error is determined by the 
inaccuracy that is involved inherently in the observation process. It can be used to measure the 
level of sensor health problem and to rectify observed values. Random error is, however, 
natural to any type of measurement. Even with a perfectly functioning detector, the traffic 
counts can be ostensibly different from true values. Hence, it should not be an indicator of 
sensor health problem unless its scale is abnormally large, but its related knowledge is 
important in deriving estimator’s properties and conducting statistical inference. Therefore, by 
integrating a sensor measurement error model and a transportation network model, we 
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propose a Generalized Method of Moments (GMM) based estimation approach to determine 
the parameters of systematic and random errors of traffic sensors in a road network. The roles 
and functionalities of the problem discussed in this paper are illustrated in Figure 1and 
highlighted in blue. Steps 1 and 2 are the detection of completely and partially malfunctioning 
sensors, respectively. Step 3 represents standard denoising procedure. Step 4 is to correct 
systematically erroneous data. Step 5 is to impute missing data. 

 

Figure 1. Sensor Data Processing Chart 

The rest of the report is organized as follows. The second section provides the detail of sensor 
measurement error model and describes the way that flow balance law fits into structural 
equations which serves as a foundation to estimation. The third section introduces a main 
GMM approach that provides unique and statistically consistent estimates of systematic error 
parameters. The fourth section discusses the estimation of random error parameters and their 
uses on sensor health monitoring and traffic data correction. The fifth section first uses a small 
walk-though example, then demonstrates the numeric robustness of the method with respect 
to various factors, and finally employs a large-scale case study to examine the scalability. The 
sixth section concludes the paper with discussion and future extensions. 

2. Mathematical Model 

Considering the wide range of types and levels of sensor malfunction, it is difficult, if at all 
possible, to find a universal mathematical model to explain all possible data errors of a roadway 
sensor. Traffic agencies have extensively conducted univariate tests that use simple but reliable 
filters to identify completely broken sensors based on their individual outputs. Complementary 
to those existing efforts, we focus on failure types that are more subtle for two reasons. First, 
such failure is typically not as easily identifiable as completely broken ones thus needing more 
in-depth investigation. Second, data generated by those sensors may be erroneous but still can 
be informative if systematic error can be identified to correct these data. 

In this section, we first explain basic assumptions for sensor error generation mechanism and 
develop mathematical models, from general to specific, for measurement errors. Then we 
discuss how the important network relation, i.e. flow balance law, should be utilized in the 
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model setting. In preparation of sensor error estimation, a system of structural equations is 
generated by integrating the measurement model and flow balance conditions. 

2.1. Measurement Errors 

Suppose road traffics are continuously monitored by sensors and the number of passing 
vehicles is reported based on consecutive time intervals. Let the recorded count for 𝑠-th vehicle 
passing the detection scope of sensor a during the measurement period in question be 1 + ∈𝑎

s , 
where the registration error ∈𝑎

s
 is a random variable. Note that ∈𝑎

s
 is by nature discrete since a 

passing vehicle either correctly incurs one count or mistakenly zero or more counts. Then for a 
measurement interval the aggregated traffic count of sensor a is expressed as, 

𝑉𝑎 = 𝑍𝑎 +∑𝜖𝑎
𝑠 ,

𝑍𝑎

𝑠=1

 

 (2.1) 

where 𝑍𝑎 is the true value of traffic volume, and 𝑉𝑎 is the measured count. Then the total error is 
expressed as the sum of systematic error and random error, 

∑∈𝑎
𝑠

𝑧𝑎

𝑠=1

= 𝑉𝑎 − 𝑍𝑎 = (𝐸[𝑉𝑎|𝑍𝑎] − 𝑍𝑎)⏟          
systematic error

+ (𝑉𝑎 − 𝐸[𝑉𝑎|𝑍𝑎])⏟          
random error

. 

 (2.2) 

The basic assumption is that the measurement error generation mechanism is invariant among 
all the time intervals. It is not hard to justify by restricting estimation horizon to have a suitable 
time duration. Hence, the parameters that control the error generation are considered fixed 
over time. As a consequence, we use time independent vectors µ and σ for the parameters 
related to systematic error and random error, respectively. Without loss of generality, we could 
write the first two central moments of traffic counts conditioning on 𝑍 as deterministic 
functions of 𝑍, such as, 

𝐸[𝑉𝑎|𝑍𝑎] = 𝑓(𝑍𝑎; 𝜇𝑎) and Var[𝑉𝑎|𝑍𝑎] = 𝜑(𝑍𝑎; 𝜎𝑎
2). (2.3) 

In this general modeling framework, the exact forms of function 𝑓 and 𝜑 depend on the nature 
of the registration error 𝜖𝑎

s . For example, if the variance of 𝜖𝑎
s

 rises when traffic volume 𝑍𝑎  

becomes higher, then 𝜑(𝑍𝑎; 𝜎𝑎
2) should increase faster than 𝑍𝑎. 

The main emphasis of this work is to introduce a statistical method of estimating error and 
reconstructing flows using networked data. Instead of delving into the detailed discussion of 
the choices for 𝑓 and 𝜑, we bring an additional assumption to narrow our focus to a specific 
model. Assume that 𝜖𝑎

s
 is independent identically distributed (i.i.d.) with mean 𝜇𝑎  and 𝜎𝑎, we 

obtain the statistics of the traffic counts, that is, 

𝐸[𝑉𝑎|𝑍𝑎] = 𝑍𝑎 + 𝜇𝑎𝑍𝑎  and  Var[𝑉𝑎|𝑍𝑎] = 𝜎2𝑍𝑎.  (2.4) 
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Hence, 𝜇𝑎𝑍𝑎 is the systematic error of the measurement. Let 𝑈𝑎  =  𝑉𝑎 − 𝐸(𝑉𝑎|𝑍𝑎) denote the 
random error of the measurement and Var(𝑈𝑎|𝑍𝑎) = Var(𝑉𝑎|𝑍𝑎). Because now the moments 
are linear functions of 𝑍, we also call 𝜇𝑎 the systematic error ratio and 𝜎𝑎

2 the random error 
ratio. 

A practical concern worth noting is that a road segment typically consists of multiple lanes. For 
sensors like video cameras or weight tubes, only one sensor unit is needed at a location to 
capture vehicles on all the lanes. For sensors like inductive loop detectors, multiple detectors 
are typically embedded in parallel across the road to capture vehicles on all the lanes. Here, we 
make a simplification that sensors installed on multiple lanes across a road section are 
considered as one single sensor integrally, referred to as a link-level sensor set. Consequently, 
all variables in the measurement error estimation model are link specific, indexed by a subscript 
a. Though link a may have sensors in completely different conditions (for example, one lane 
may have an overly sensitive sensor that mistakenly records vehicles passing on an adjacent 
lane, while another lane may have a sensor that fails to count), the model in (2.3) is able to 
capture the mixed effect of multiple sensors. 

2.2. Network Structure 

Now let us turn to an important spatial relation between measurements that should be utilized. 
Consider a traffic network abstracted into a directed graph 𝒢 = {𝒩,𝒜}. The flow balance law, 
i.e., the total flow entering an intermediate node i should be equal to the total flow exiting that 
node, can be written as, 

∑ 𝑍𝑎
𝑎∈𝒜+(𝑖)

−∑ 𝑍𝑎
𝑎∈𝒜−(𝑖)

= 0, ∀𝑖 ∈ ℐ, 

 (2.5) 

where ℐ ⊂ 𝒩 is the sets of intermediate nodes. 𝒜+(𝑖) and 𝒜−(𝑖) are the set of entering links 
and exiting links, respectively. Let 𝑃 be the node-link adjacency matrix, whose element on 𝑖-th 
row and 𝑎-th column 𝑝𝑖𝑎 =  1 if 𝑎 ∈ 𝒜+(𝑖), –1 if 𝑎 ∈ 𝒜−(𝑖), and 0 otherwise. The size of 

matrix 𝑃 is 𝑚 × 𝑛 with 𝑛 = |𝒜| and 𝑚 = |ℐ|. The operation || counts the number of elements 
in its argument. The vector-matrix form of the above equation is 

𝑃𝑍 = 0,  (2.6) 

where 𝑍 = [𝑍𝑎] ∈ ℝ+
𝑛 . 

Due to the temporal change in traffic intensity and the presence of congestion shockwaves 
passing along the paths, the discrepancy between upstream and downstream flow in a time 
interval may exist, and the flow balance is violated, as 

∑ 𝑍𝑎
𝑎∈𝒜+(𝑖)

−∑ 𝑍𝑎
𝑎∈𝒜−(𝑖)

= 𝜂𝑖 , ∀𝑖 ∈ ℐ. 

 (2.7) 
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For a well-defined observation interval, 𝜂𝑖  is a random variable with a zero mean and a 
relatively small scale compared to true traffic volume. The flow imbalance ratio is defined as 
𝜏𝑖 = 2𝜂𝑖/(∑ 𝑍𝑎𝛼𝜖𝒜+(𝑖) +∑ 𝑍𝑎)𝛼𝜖𝒜−(𝑖) . From statistics perspective, it is straightforward to 

understand that the flow imbalance ratio should approach zero as the time interval of 
observations extends. It means that flow imbalance is of less concern when the observation 
interval is long enough. From traffic characteristics, nearly all traffic should be cleared over an 
observation interval of 24 hours. Therefore, in sensor data studies, link counts are often 
aggregated to a daily observation to make sure that flow balance law holds to an almost perfect 
level (for example, in Sun et al. (2016) and Yin et al. (2017)). The disadvantage of cumulating 
traffic counts by day is that the data sample size might be too small to conduct a proper 
estimation of sensor error. However, in those studies, it is critical to have nearly zero 𝜂𝑖’s 
because traffic flows in the entire network may be related at the same equation. Clearly, it is 
much less probable to have link flows on the different edges of a large network conforming 
flow balance law with marginal discrepancy, though such equations can be derived via linear 
transformation of 𝑃. In statistics, it is easy to comprehend that link flows that are 
geographically apart with dozens of intermediate nodes in between may have a notably 
significant discrepancy, since it is equal to the sum of several 𝜂𝑖’s which have very likely positive 
correlation that enhances the imbalance. 

In this paper, it is acceptable to divide the entire observation horizon into finer intervals (such 
as hourly window) and to have flow balance hold in an imperfect but satisfactory level. The first 
reason is that we use nodal balance law directly at its original form without any affine 
transformation of 𝑍 so that only a single 𝜂𝑖   exists in a structural equation that relates 
neighboring traffic flows. Second, in the estimation method proposed in the subsequent 
section, 𝜂𝑖   can be absorbed into random measurement error and does not affect the 
identification of systematic error ratios except slight influence on the efficiency of their 
estimators. This statement will be further illustrated using a numerical experiment in 5.2.4. 
Unbalanced Flows. 

2.3. Structural Equations 

We wish to conduct estimation for the parameter vector 𝜇 = [𝜇𝑎] ∈ ℝ𝑛 which is critical in 
evaluating sensor health and correcting traffic counts. In doing so we need to prepare flow 
balance equations in a form that the chosen estimation principle can be conveniently applied 
to. 

Let us denote the 𝑛 × 1 nonnegative vector 𝑉 = [𝑉𝑎]. 𝑉
(𝑡) and 𝑍(𝑡) are the traffic counts and 

true flows respectively in observation interval 𝑡. The likelihood of 𝜇 given the sequence of 

observed data 𝑉1,…,𝑉(𝑇) is 

ℒ(𝜇; 𝑉(1), … , 𝑉(𝑇)) = ∫ …
𝑃𝑧(1)=0

∫ 𝑝(𝑉(1), … , 𝑉(𝑇), 𝑍(1) = 𝑧(1), … , 𝑍(𝑇) =
𝑃𝑧(𝑇)=0

𝑧(𝑇); 𝜇)𝑑𝑧(1)…𝑑𝑧(𝑇) , 

(2.8) 
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where 𝑝() denotes the joint probability density of traffic counts and true flow. Self-evidently, 
explicitly handling latent variables 𝑍 in the estimation model would require excessive 
knowledge to characterize the stochasticity of 𝑍. The mutual dependence among link flows 
𝑍 both spatially and temporally is not merely a result from flow balance but governed by travel 
demand generation and assignment processes that are interrelated and complicated. 

In order to obviate directly dealing with latent 𝑍, we substitute it by observable 𝑉 and another 
latent variable 𝑈 in (2.5). Hence, the coupling of measurement error model and flow balance 
relation results in a system of structural equations, 

∑ 𝑓𝑎
−1(𝑉𝑎

𝑎∈𝒜+(𝑖)

−𝑈𝑎; 𝜇𝑎) − ∑ 𝑓𝑎
−1(𝑉𝑎

𝑎∈𝒜−(𝑖)

−𝑈𝑎; 𝜇𝑎) = 0, ∀𝑖 ∈ 𝐼. 

 (2.9) 

To continue the derivation, we have to concentrate on one specific model under the big 
umbrella (2.3). With the i.i.d. assumption of 𝜖𝑎

𝑠  among all 𝑠, the equations (2.9) become 

∑
𝑉𝑎

1 + 𝜇𝑎
𝑎∈𝒜+(𝑖)

− ∑
𝑉𝑎

1 + 𝜇𝑎
𝑎∈𝒜−(𝑖)

= ∑
𝑈𝑎

1 + 𝜇𝑎
𝑎∈𝒜+(𝑖)

− ∑
𝑈𝑎

1 + 𝜇𝑎
𝑎∈𝒜−(𝑖)

, ∀𝑖 ∈ 𝐼. 

  (2.10) 

To simplify this expression, let 𝛽 = [𝛽𝑎] = [1/(1 + 𝜇𝑎)], so 𝛽𝑎(𝑣𝑎 − 𝑢𝑎) = 𝑧𝑎, then a concise 
form of (2.9) is given by 

𝑃(𝑉 ∘ 𝛽 = 𝑃(𝑈 ∘ 𝛽).  (2.11) 

The operator ∘ is the Hadamard product1. Both sides of (2.11) involve unknown systematic 
error ratio 𝛽. The left hand side contains observables 𝑉 instead of any latent 𝑍, and the right 
hand side entails random error 𝑈 = [𝑈𝑎] ∈ ℝ𝑛. 

The system of structural equations (2.11) provides the fundamental relation for GMM principle 

to estimate systematic error. In this model,  is strictly greater than –1, because it is 
meaningless to conduct error estimation for sensors with no counts, which should be a 

completely broken case. Thus, the parameter space for vector  is ℝ++
𝑛 . The case that 𝛽𝑎 = 1 or 

𝜇𝑎 = 0 indicates that the sensor on link 𝑎 does not have any systematic error. 

3. Generalized Method of Moment Estimation 

Having developed a model combining sensor measurement errors and flow balance law, we 
now propose an adaptable estimation framework based on GMM principle, which includes both 
classic moment matching and generalized least square (GLS). The primary concern of this 
section is whether it is possible to obtain the “correct” estimate of parameter . There are two 

 

1 This binary operation takes two matrices/vectors of the same dimensions, and produces another 
matrix/vector where each element 𝑖, 𝑗 is the product of elements 𝑖, 𝑗 of the original two matrices/vectors.  
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important issues to be addressed: essentially, parameter identifiability, which is to ensure the 
resulting method has a unique estimate without ambiguity; furthermore, estimator 
consistency, which is to ascertain the estimates approaching to the true ones when the data 
size is sufficiently large. 

3.1. Estimation Framework 

We define a zero-mean vector-valued stochastic function 𝑔() using relation (2.11). In GMM 
framework, the estimate of  is found by minimizing a vector norm of 𝑔(). Adopting Euclidean 
distance, we will obtain a minimization problem formulated as 

min
𝛽 > 0

g(𝛽)⊤𝑊g(𝛽) (3.1) 

where 𝑊 is a positive-definite weighing matrix, which only affects the rate of estimator’s 
quality improvement against the data sample size. According to GMM theory, the optimal 
weighting matrix that achieves an efficient estimator of  with minimum variance is the inverse 

of variance-covariance matrix of random function 𝑔(), Cov[𝑔()], denoted as . We will 
further investigate the specification and the updating scheme of W in the next section on 
statistical inference. 

Under this paradigm, a specific statistical estimation method to estimate  is determined by the 
way that 𝑔() is constructed. For each measurement interval 𝑡, we know 

𝑃(𝑉(𝑡) ∘ ) = 𝑃(𝑈(𝑡) ∘ ), 𝑡 = 1,… , 𝑇.  (3.2) 

Then the classic method of moments computes the average from all the observations and 
solves parameters by matching population moments with their sample analogs, i.e., 

𝑔() = 𝑃 (
1

𝑇
∑𝑉(𝑡) ∘

𝑇

𝑡−1

) , 

 (3.3) 

then the dimension of 𝑔() is 𝑚 × 1. Compressing data into its first moment greatly reduces 
the number of elements in 𝑔() and thereof restricts the amount of information used for 

estimating . Oppositely, the GLS method minimizes the sum of squared residuals of 𝑃𝑉(𝑡) in 
all intervals, which utilizes all the observations without any transformation. The generalized 
moment conditions in this case are now 

𝑔() = [(𝑃(𝑉(1) ∘ ))
⊤
, … , (𝑃(𝑉(𝑇) ∘ ))

⊤
]
⊤

, 

 (3.4) 

then the dimension of 𝑔() is 𝑇𝑚 × 1. In a more flexible manner, it is possible to aggregate 
observation data for estimation to reduce the problem scale without losing much structural 
information. First, traffic counts collected from different time intervals are assigned into 𝐾 
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groups, 𝑇(𝑘), 𝑘 = 1, . . , 𝐾 based on their similarity. Each observation v(t) in the same group does 
not have to be temporally adjacent. The exact choice of a clustering approach, for instance, K-
nearest neighbors, is not critical in this framework. In fact, simply grouping observations based 
on time-of-day could be a proper choice. Finally, the 𝑔() functions are constructed as  

g() = [(𝑃(
1

|𝒯(1)|
∑ 𝑉(𝑡)

𝑡∈𝒯(1)

∘ ))

⊤

, … , (𝑃 (
1

|𝒯(𝐾)|
∑ 𝑉(𝑡)

𝑡∈𝒯(𝐾)

∘ ))

⊤

]

⊤

. 

 (3.5) 

with (3.3) and (3.4) being its special cases when 𝐾 = 1 and 𝐾 = 𝑇, respectively. The number of 
elements in 𝑔() is 𝐾𝑚 then. In the following subsections, the advantages and disadvantages 
of different grouping strategies will be explained and compared in terms of parameter 
identification and estimator consistency. 

3.2. Parameter Identification 

From an algebraic perspective, the minimization problem (3.1) is to solve a homogeneous 
system of equations with only strictly positive solution permitted as  

𝑊1/2𝐴 = 0,where A = [
𝐴[1]

⋮
𝐴[𝐾]

] ∈ ℝ𝐾𝑚×𝑛, 𝐴[𝐾] = 𝑃diag (
1

𝒯(𝑘)
∑ 𝑉(𝑡)

𝑡∈𝒯(𝑘)

) ∈ ℝ𝑚×𝑛. 

 (3.6) 

𝑊 ∈ ℝ𝐾𝑚×𝐾𝑚 should have a block structure where each nontrivial sub-matrix 𝑊[𝑘] 
corresponds to group 𝑘 located on its diagonal. In the case where the rank of 𝐴 is less than its 
number of columns 𝑛, the constrained homogeneous system admits infinitely many solutions. 
Precisely, the solution set is the intersection of strictly positive orthant and the null space of 𝐴. 
Thus, no unique estimate of  can be found by solving (3.1). In the case 𝐴 has full column rank, 
since only the trivial solution solves equations (3.6), the Euclidean norm of the estimate using 

(2.9), ‖̂‖
2

, will be extremely close to zero. In spite of the fact that the unique estimate 

theoretically exists, it is of little use to our estimation problem, because then 𝜇 → ∞ and 𝑍 → 0 
regardless actual values in the dataset. Thus, we are not able to obtain unique and meaningful 
estimate unless additional information is incorporated.  

For a concrete problem, there usually exist a large variety of constraints that can be formulated 
into problem (3.1) based on knowledge and beliefs towards sensor quality. Here we simply 
choose a way that is commonly applicable and effective in finding an estimate. When there is a 
set of sensors recently installed or calibrated in the network, denoted as 𝒜1 ⊂ 𝒜, these can be 
treated as free of systematic error, i.e., 𝜇𝑎 = 0. The corresponding constraints are expressed as  

𝛽𝑎 = 1,∀𝑎 ∈ ∀1. (3.7) 
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The set of the remaining sensors is denoted 𝒜0 = 𝒜 −𝒜1. We now create an indicator matrix 
𝑀0 for 𝒜0 by removing rows that are not associated with 𝒜0 from an 𝑛 × 𝑛 identity matrix. 
Similarly, 𝑀1 is made for 𝒜1. For an arbitrary 𝑛 × 1 vector 𝑥, 𝑥0 = 𝑀0𝑥 and 𝑥1 = 𝑀1𝑥. For an 

arbitrary 𝑋 with 𝑛 columns, 𝑋0 = 𝑋𝑀0
⊤ and 𝑋1 = 𝑋𝑀1

⊤.  

Let 𝛽1 be the subvector of parameters corresponding to those good sensors. 𝛽0 is the subvector 
that is still unknown. Substituting 𝛽1 = 1 into the homogeneous system and moving the 
constant terms to the right hand side, we will acquire a different system of linear equations as 
follows  

𝑊1/2𝐴0𝛽0 = 𝑊1/2𝑏, with 𝑏 = −𝐴1𝛽1 ∈ ℝ𝐾𝑚×1. (3.8) 

In order to claim that (3.8) is a non-homogeneous system of equations, we only need two 
simple justifications. First, the good sensors are involved in flow balance relation, so 𝑃1 contains 

at least one non-zero entry. Then there are traffic counts recorded on those sensors. 𝑉1
(𝑡)
, 𝑡 =

1,… , 𝑇 are not all zeros. Now we express 𝐴1 = [𝐴1
[𝑘]⊤, … , 𝐴1

[𝑘]⊤]⊤ with 𝐴1
[𝑘]

=

𝑃1diag(∑ 𝑉1
(𝑡))𝑡∈𝒯(𝐾) , 𝑘 = 1, … , 𝐾. Given that at least one element in all 𝑉1

(𝑡)
, 𝑡 = 1,… , 𝑇  is 

strictly positive, 𝐴1 is nontrivial. Since 𝛽1 = 1, 𝑏 is not of all zeros. Therefore, without the 
positiveness constraint which is rarely bounded in practice, by the first order conditions of 
problem (3.1), the estimate of 𝛽0 is the solution of the non-homogeneous system (3.8) and 
given as  

𝛽̂GMM = (𝐴0
⊤𝑊𝐴0)

−1 𝐴0
⊤𝑊𝑏, (3.9) 

if 𝐴0 has a full column rank. 

If 𝐴0 is column rank deficient, this linear system is underdetermined and the minimization 
problem (3.1) admits infinitely many solutions with the same objective values. So let us take a 
further look at whether this important condition holds for all different aggregation strategies. If 

none of the elements in vector ∑ 𝑉0
(𝑡)

𝑡∈𝒯(𝑘)  is zero, the rank of each block 𝐴0
(𝑘)

 is equivalent to 

the rank of 𝑃0, which is bounded above by the number of intermediate nodes 𝑚. Typically 𝑚 is 

less than the number of links 𝑛 minus 𝑛1 = |𝐴1| in a general network, so 𝐴0
(𝑘)

 is not full rank 

and yields insufficient information to identify 𝛽 by itself. On account of the variability of 𝑉(𝑡) 
across the observation sets, the stack-up matrix 𝐴0 is possibly full rank. With 𝐾 groups 
specified, the rank of 𝐴0 is bounded above by the less value between 𝑚𝐾 and 𝑛0 = 𝑛 − 𝑛1. The 
actual rank should be positively correlated with 𝐾.  

For the extreme strategy 𝐾 = 1, regardless data sample size 𝑇, classic moment matching with 
only the first moments of 𝑉 is most likely not capable to identify this measurement error model 
unless 𝑚 ≥ 𝑛0. Albeit it is possible to improve identification by incorporating second moment 
conditions (See 4.1. Estimating Random Errors), those equations involve unknown nuisance 
parameters and render the optimization problem notably harder to solve.  
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Besides the column rank of 𝐴0, we need to note that it is also critical to examine the numerical 
stability of the estimation problem. This relates to the way of selecting group members. If the 
grouped means are very close, the resulting matrix 𝐴0 will have singular values with very small 
magnitude. Consequently, the matrix 𝐴0

⊤𝑊𝐴0 is ill conditioned and the solution to (3.9) is 
numerically unstable. Therefore, K-mean clusters and simply grouping based on time-of-day are 
sound choices to have distinct group means.  

3.3. Estimator Consistency  

The next immediate task is to verify that the unique estimate is statistically consistent, in other 
words, the estimated values will approach the true ones when the number of observations 
grows infinitely. Although moment matching method 𝐾 = 1 provides limited information to 
estimate 𝛽0, it always provides consistent estimator once the model is identified. In contrast, 
the resultant least square method from 𝐾 = 𝑇 is able to provide 𝑛0 linearly independent 
equations as long as the traffic counts vary enough, but its estimates suffer from “error-in-
variable” model and do not converge to true ones even with an infinitely large data sample. 
This issue generally arises when the correlation between observed values or error terms is 
significant. In our problem, this is due to the existence of measurement errors in traffic counts, 

such as Cov[𝑉𝑎
(𝑡), 𝑈𝑎

(𝑡)] ≠ 0. 

As 𝑉(𝑡) = 𝑍(𝑡)diag(𝛽)−1 +𝑈(𝑡), 𝑡 = 1, . . . , 𝑇, we can expand 

𝐴 = 𝐶diag(β)−1 +𝐷, (3.10) 

where 

𝐶 = [
𝐶[1]

⋮
𝐶[𝐾]

] , 𝐶[𝑘] = 𝑃diag( ∑ 𝑍(𝑡)

𝑡∈𝒯(𝑘)

) 

and 

𝐷 = [
𝐷[1]

⋮
𝐷[𝐾]

] , 𝐷[𝑘] = 𝑃diag( ∑ 𝑈(𝑡)

𝑡∈𝒯(𝑘)

). 

Also let 𝑏[𝑘] = 𝐴1
[𝑘]
𝛽1, 𝑘 = 1, . . . , 𝐾. Now let us focus on the case (𝐾 = 𝑇) least square 

estimation. Because Cov[Z(𝑡), 𝑈(𝑡)] = 0 and 

𝑃0𝑉0
(𝑡)

= 𝑃0𝑍0
(𝑡)
diag(𝛽0)

−1 + 𝑃0𝑈0
(𝑡)

  and  𝑃1𝑉1
(𝑡)

= 𝑃1𝑍1
(𝑡)
+ 𝑃1𝑈1

(𝑡) = 𝑃0𝑍0
(𝑡)

+ 𝑃0𝑈0
(𝑡)
, 

(3.11) 

we obtain the formulas for the following statistics among 𝑇 observations 
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 𝐸𝑇 [𝐴0
(𝑡)⊤𝑊(𝑡)𝑏(𝑡)] = diag(𝛽)−1𝐸𝑇 [𝐶0

(𝑡)⊤𝑊(𝑡)𝐶0
(𝑡)], (3.12) 

 𝐸𝑇 [𝐴0
(𝑡)⊤𝑊(𝑡)𝐴0

(𝑡)
] = diag(𝛽)−2(𝐸𝑇 [𝐶0

(𝑡)⊤𝑊(𝑡)𝐶0
(𝑡)] + 𝐸𝑇 [𝐷0

(𝑡)⊤𝑊(𝑡)𝐷0
(𝑡)]), 

where 𝐸𝑇 is the expectation across all time intervals when 𝑇 → ∞. Therefore, by Slutsky’s 
theorem, when the sample size increases infinitely, the least square estimate of 𝛽0 should 
converge almost surely to a vector that is distinct from 𝛽0 such as 

 𝛽̂𝐿𝑆
𝑝
→ 𝛽(𝐸𝑇 [𝐶0

(𝑡)⊤
𝑊(𝑡)𝐶0

(𝑡)
] + 𝐸𝑇 [𝐷0

(𝑡)⊤
𝑊(𝑡)𝐷0

(𝑡)
])−1𝐸𝑇 [𝐶0

(𝑡)⊤
𝑊(𝑡)𝐶0

(𝑡)
] ≠ 𝛽0. (3.13) 

The exact correction approach for least square estimates requires parameters for both 
systematic and random errors. Let 𝜎0 = 𝑀0𝜎. Since the second moments of the error term on 
interval t can be expressed as  

 𝐸 [𝑃0𝑈0
(𝑡)(𝑃0𝑈0

(𝑡))
⊤
|𝑍(𝑡)] = 𝑃0diag(Z0

(𝑡))diag(σ0)
2𝑃0

⊤ , (3.14) 

the extra term in (3.13) is the average of those moments across all time intervals,  

𝐸𝑇 [𝐷0
(𝑡)⊤

𝑊(𝑡)𝐷0
(𝑡)
] =

1

𝑇
𝑃0diag (∑𝑍0

(𝑡)

𝑇

𝑡=1

)diag(σ0)
2 𝑃0

⊤
𝑎.𝑠.
← 

1

𝑇
𝑃0diag (∑𝑉0

(𝑡)

𝑇

𝑡=1

∘ 𝛽0)diag(σ0)
2𝑃0

⊤. 

(3.15) 

Therefore, the corrected least square estimate is given by 

𝛽̂CRLS = (𝐴0
⊤𝑊𝐴0 − 𝑃0diag(∑𝑉0

(𝑡)

𝑇

𝑡=1

∘ 𝛽0)diag(σ0)
2𝑃0

⊤)

−1

𝐴0
⊤𝑊𝑏. 

 (3.16) 

A comprehensive overview on linear error-in-variable models and a variety of remedial means 
can be found in Gillard (2010). However, most of them require either additional data 
(instrumental variable) or information (maximum likelihood). Among all practical approaches 
that do not rely on knowledge about 𝛽 or , the most competing one for our specific problem is 
total least square (TLS). It typically involves a separate numerical procedure (See Golub and Van 
Loan, 1980 for details) other than using a simple quadratic minimization problem. Oppositely, 
our novel approach is naturally embedded in GMM estimation methods and can be dealt within 
the same optimization framework. In fact, it is simply achieved by aggregating data to maximize 
the variation of group means. 

On one hand, when data is aggregated by 𝐾 groups, the second order statistics 𝐸𝐾  of group 
means converges to that of pure traffic counts 𝐸𝑇 

 𝐸𝐾 [𝐶0
[𝑘]⊤𝑊[𝑘]𝐶0

[𝑘]]
𝑎.𝑠.
→ 𝐸𝑇 [𝐶0

(𝑡)⊤
𝑊(𝑡)𝐶0

(𝑡)
]. (3.17) 
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Here 𝐸𝑘[∙] is the expectation across all 𝐾 groups as 𝐾 → ∞ given the growth of 𝐾 is slower than 
𝑇. On the other hand, 

 𝐸𝐾 [𝐷0
[𝑘]⊤𝑊[𝑘]𝐷0

[𝑘]]
𝑎.𝑠.
→ 𝐸𝑇 [𝐷0

(𝑡)⊤
𝑊(𝑡)𝐷0

(𝑡)
]. (3.18) 

The estimate with aggregated data is approaching to 𝛽0 as 𝐾/𝑇 diminishes, since 

 𝛽̂GMM

𝑝
→ 𝛽 (𝐸𝑇 [𝐶0

(𝑡)⊤𝑊(𝑡)𝐶0
(𝑡)] +

𝐾

𝑇
𝐸𝑇 [𝐷0

(𝑡)⊤𝑊(𝑡)𝐷0
(𝑡)])

−1

𝐸𝑇 [𝐶0
(𝑡)⊤𝑊(𝑡)𝐶0

(𝑡)]. (3.19) 

4. Statistical Inference 

As the previous section focuses merely on attaining a unique and consistent estimate of 
systematic error parameters, we now delve into the way to improve estimation efficiency 
against sample size, conduct hypothesis tests to infer biased sensors and ultimately reconstruct 
traffic flows using estimated parameters. For those purposes, we first have to estimate 
nuisance parameter  for random measurement error scale. Based on that, we construct 
optimal weighting matrix and derive the large sample properties for 𝛽 estimator. Finally, a 

maximum likelihood estimation of 𝑍(𝑡) in each interval 𝑡 is proposed together with an updating 
algorithm summarizing the efficient estimation of both 𝛽 and . 

4.1. Estimating Random Errors 

The estimation of   resides in the same GMM framework as for 𝛽 except that the second order 
conditions are in use instead. According to the structural equations (2.10), 

𝐸 [( ∑ 𝑝𝑖𝑎𝛽𝑎𝑉𝑎
(𝑡)

𝑎∈𝒜(𝑖)

)( ∑ 𝑝𝑗𝑎𝛽𝑎𝑉𝑎
(𝑡)

𝑎∈𝒜(𝑗)

) |𝑍(𝑡)] = 𝐸 [( ∑ 𝑝𝑖𝑎𝛽𝑎𝑈𝑎
(𝑡)

𝑎∈𝒜(𝑖)

)( ∑ 𝑝𝑗𝑎𝛽𝑎𝑈𝑎
(𝑡)

𝑎∈𝒜(𝑗)

) |𝑍(𝑡)] . 

(4.1) 

After the terms on the right hand side is rearranged, we obtain 

∑ ∑ 𝑝𝑖𝑎𝑝𝑗𝑎′𝛽𝑎𝛽𝑎′𝐸

𝑎′∈𝒜(𝑗)𝑎∈𝒜(𝑖)

[𝑈𝑎
(𝑡)𝑈

𝑎′
(𝑡)|𝑍(𝑡)] = ∑ 𝑝𝑖𝑎𝑝𝑗𝑎𝛽𝑎

2

𝑎′∈𝒜(𝑖)∩𝒜(𝑗)

Var[𝑈𝑎
(𝑡)|𝑍(𝑡)], 

 (4.2) 

because of the mutual independence of random error generation process in each sensor. We 

substitute the formula for 𝑉𝑎𝑟[𝑈𝑎
(𝑡)|𝑍(𝑡)] = 𝑎

2𝑍
𝑎

(𝑡)
 and express the second moment condition in 

a matrix form 

 𝐸[𝑃diag( ∘ 𝑉(𝑡))2𝑃⊤|𝑍(𝑡)] = 𝑃diag( ∘ )2diag(𝑍(𝑡))𝑃⊤. (4.3) 

Because 𝐸[𝑉(𝑡) ∘ |𝑍(𝑡)] = 𝑍(𝑡), the moment condition becomes 

 𝐸 [𝑃diag()diag(𝑉(𝑡))
2
𝑃⊤ − 𝑃diag( ∘ )2diag( ∘ 𝑉(𝑡))𝑃⊤] = 0. (4.4) 
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We avoid requiring unknown 𝑍(𝑡) in this combined condition. In the estimation of 𝜎 with 𝐾 
groups, we would like all elements in the following vector function to simultaneously become 
zero, 

ℎ(;) =

[
 
 
 vech(𝑃𝑑𝑖𝑎𝑔() (

1

|𝒯(1)|
∑ diag(𝑉(𝑡))

2
𝑡∈𝒯(1) )𝑃⊤ −𝑃diag( ∘ )2diag( ∘

1

|𝒯(1)|
∑ 𝑉𝑡∈𝒯(1)

(𝑡)
)𝑃⊤

⋮

vech(𝑃diag() (
1

|𝒯(𝐾)|
∑ diag(𝑉(𝑡))

2
𝑡∈𝒯(𝐾) )𝑃⊤ − 𝑃diag( ∘ )2diag( ∘

1

|𝒯(𝐾)|
∑ 𝑉𝑡∈𝒯(𝐾)

(𝑡)
)𝑃⊤]

 
 
 
 .

 (4.5) 

Here vech(∙), the half vectorization of an 𝑚 ×𝑚 square matrix, returns an 
𝑚(𝑚+1)

2
× 1 vector 

containing all the elements of the lower triangular portion. The nuisance parameter  becomes 
the only unknown in this relation after  is estimated. It is clear that ℎ(;) is linear in . The 

GMM estimate of 𝜎 is found by solving a quadratic problem that minimizes ‖ℎ(; ̂)‖
2

2
. 

Although the total number of entries in ℎ is 𝐾
𝑚(𝑚+1)

2
 there are much less valid equations that 

can be used to identify  because the coefficients of 𝑎
2 ’s in some equations are all zeros. From 

the relation (4.2), we know both sides of equations are simply zero if nodes 𝑖 and 𝑗 are not 
directly connected by one link. Therefore, the number of valid equations that associate two 
different nodes is equal to the number of non-leaf links. Because the number of leaf links is 
equivalent to that of nodes with degree one (𝒩 −𝑚), we should have 𝑛 − (|𝒩| −𝑚) 
equations for non-trivial covariance of node relation. We know that 𝑚 equations are given for 
the variance of nodal relation. In sum, after removing all useless equations, ℎ would have 
𝐾(𝑛 − |𝒩| + 2𝑚) entries. 

4.2. Efficient Estimator and Infer Sensor Health 

Next we develop a general formula for the optimal choice of weighting matrix 𝑊. For any two 
elements 𝑖 and 𝑗 in 𝑔(), if 𝑖 and 𝑗 are two nodes that belong to the same aggregation group 𝑘, 
then 

𝐸[𝑔𝑖()𝑔𝑗()] =
1

|𝒯(𝑘)|2
∑ ∑ 𝑝𝑖𝑎𝑝𝑗𝑎𝑎

2𝛽𝑎
3𝑉𝑎

(𝑡)

𝑎∈𝒜(𝑖)∩𝒜(𝑗)

,

𝑡∈𝒯(𝑘)

 

(4.6) 

by assuming random error 𝑈(𝑡) from different intervals are independent. If 𝑖 and 𝑗 are not from 
the same group, 𝐸[𝑔𝑖(𝛽)𝑔𝑗(𝛽)] is simply zero. The corresponding matrix form of all elements 

covariance Ω is then made of 𝐾 blocks: 

Ω =
|

|

1

|𝒯(1)|2
∑ 𝑃diag(𝑉(𝑡))diag()2diag()3𝑃⊤

𝑡∈𝒯(1)

… 0

⋮ ⋱ …

0 …
1

|𝒯(𝐾)|2
∑ 𝑃diag(𝑉(𝑡))diag()2diag()3𝑃⊤

𝑡∈𝒯(𝐾)

|

|
 . 

(4.7) 
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Thus, in method of moments estimation, the covariance matrix is just one single block, while in 
GLS, it is a block diagonal matrix of 𝑇 non-trivial blocks. Knowing 𝛽1 or not does not make any 
difference to the formula of Ω(𝛽). 

One important characteristic of statistical inference of systematic error is to provide evidence 
for the costly decision of replacing/recalibrating installed sensors. For a particular sensor 𝑎, the 
null hypothesis, 𝐻0, is that the sensor a does not have any systematic measurement error, i.e., 

𝑎
= 1. The alternative hypothesis is that 

𝑎
≠ 1. Thus, a marginal two-sided location test 

should come in handy. First of all, according to the GMM theory, the estimator 
0

 converges in 

distribution as 𝑇 arises infinitely 

 √𝐾(̂0 − 
0
)
𝑑
→ (0, (𝐴0

⊤𝑊𝐴0)
−1𝐴0

⊤𝑊Ω𝑊𝐴0(𝐴0
⊤𝑊𝐴0)

−1). (4.8) 

In the case that 𝑊
𝑝
→Ω−1, the formula collapses to a simpler expression, 

 √𝐾(̂− )
𝑑
→ (0, Σ), where Σ = (𝐴0

⊤Ω−1𝐴0)
−1. (4.9) 

and the variance-covariance matrix of estimator using Ω−1 is proven to be the smallest among 
all results using any possible positive definite matrices 𝑊. Therefore, with the most efficient 

estimator, the standard error of  estimates is denoted by ̂
𝑎

 is then 

 se(̂
𝑎
) = √Σ𝑎𝑎/𝐾, (4.10) 

where Σ𝑎𝑎  is the diagonal entry of Σ corresponding to 
𝑎

. Hence, the test statistics is simply 

 
̂𝑎−1

se(̂𝑎)
.  (4.11) 

Then it is compared with the critical values of a standard normal distribution (asymptotic) at 
any chosen level of significance to infer whether 

𝑎
 is statistically significantly different from 

one. 

4.3. Algorithm: Estimation and Recovery 

The algorithm to implement the proposed estimation method for 
0

. is outlined as follows 

Step 0. Split the observations into 𝐾 groups; set initial weighting matrix to be 𝑊 = 𝐼.  

Step 1. Find ̂
0

old
 using (3.9). 

Step 2. Find ̂ = arg min≥0||ℎ(; ̂0
old
)||2

2. 

Step 3. Construct Ω using ̂
0

old
 and  ̂; update 𝑊 = Ω−1. 

Step 4. Find ̂
0

new
 using (3.9). 
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Step 5. Check if ||̂
0

new
− ̂

0

old
)|| ≤ 𝑡𝑜𝑙. If not, let ̂

0

new
= ̂

0

old
and go to step 3. 

Otherwise, ̂
0
= ̂

0

old
and stop. 

It is noteworthy that in Step 1 and 4, we basically ignore the positiveness constraints and apply 
the analytical formula directly, because the estimate is not supposed to get close to those 
boundary unless sensors are completely malfunctioning.  

This algorithm can be casted as a typical iteratively reweighed unconstrained least square. The 
convergence of such algorithms has been proved and discussed in depth in classical work, such 
as Osborne (1985) and state-of-art research, for example Daubechies et al. (2010).  

We now apply maximum likelihood estimation to find the remedied flows based on observed 
counts. The likelihood of observations on interval t conditioning on the true traffic flows is given 
by 

ℒ(𝑍(𝑡); 𝜇, 𝜎|𝑉(𝑡)) = 𝕝(𝑃𝑍(𝑡) = 0)∏
1

√2𝜋𝜎𝑎2𝑍𝑎
(𝑡)𝑎∈𝒜

exp(−
(𝑉𝑎

(𝑡) − (1 + 𝜇𝑎)𝑍𝑎
(𝑡))

2

𝜎𝑎2𝑍𝑎
(𝑡)

) . 

 (4.12) 

Then traffic counts can be corrected by maximizing the loglikelihood which is expressed as 

ℓ(𝑍(𝑡); 𝜇, 𝜎|𝑉(𝑡)) = 𝕝(𝑃𝑍(𝑡) = 0) (−
𝑛

2
ln2π − ∑ (ln𝜎𝑎 +

1

2
ln𝑍𝑎

(𝑡) +
(𝑉𝑎

(𝑡) − (1 + 𝜇𝑎)𝑍𝑎
(𝑡))

2

𝜎𝑎
2𝑍𝑎

(𝑡)
)

𝑎∈𝒜

) . 

 (4.13) 

Dropping the constant terms, we have the following nonlinear constrained optimization 
problem to tackle with,  

𝑍̂MLE
(𝑡)

= argmin
𝑍≥0

∑
1

2
ln𝑍𝑎 +

(𝑉𝑎
(𝑡) − (1 + 𝜇̂𝑎)𝑍𝑎

(𝑡))
2

𝜎̂𝑎
2
𝑍𝑎
(𝑡)

𝑎∈𝒜

  s. t. 𝑃𝑍 = 0, 

 (4.14) 

Although the problem is highly nonlinear and appears hard to solve in nature, fortunately it is 
for one time interval and involves only 𝑛 variables. The number of sensors in a large size 
regional transportation network rarely exceeds a thousand. It is not considered as a 
computationally challenging task given the current development of optimization techniques. 
We have employed a gradient descent based algorithm to solve the problem in all the 
numerical experiments.  

For real-time online applications using streaming data, an alternative least square based 𝑍 
estimation formulation is also stated as,  
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𝑍̂LS
(𝑡)

= argmin
𝑍≥0

∑(𝑉𝑎
(𝑡) − (1 + 𝜇̂𝑎)𝑍𝑎

(𝑡))
2

𝑎∈𝒜

  s. t. 𝑃𝑍 = 0, 

 (4.15) 

which can be handled by simple least square solvers.  

5. Numerical Examples 

5.1. An Illustrative Example using a Freeway Corridor  

 

Figure 2. Network 1: A Segment of Freeway Corridor  

The purview of the first example is to demonstrate the process of utilizing the proposed 
method to identify malfunctioning sensors and correct erroneous data. In lieu of the display 
convenience of estimation results, Test Network 1 is a freeway segment consisting of five 
directed links, including one on-ramp, one off-ramp and three mainline links, as shown in Figure 
2. Out of six nodes in this network graph, four of them are origin or destination nodes, where 
traffic flows enter or exit; and the other two are intermediate ones, where flow balance law is 
supposed to hold, so 𝑚 = 2. Each link is equipped with a traffic loop detector that counts all 
passing vehicles. Therefore, 𝑃 is a 2 × 5 matrix as illustrated next to the network graph. 

Table 1. True Parameters of Network 

 Link 1 Link 2 Link 3 Link 4 Link 5 

 .150 -.150 -.350 .000* -.200 

 .869 1.176 1.538 1.000* 1.250 

 .300 .200 .500 .500* .300 

The true systematic and random error parameters for five sensors are given in Table 1. The 
sensor on link 4 is recently calibrated so that both 𝜇4 and 𝜎4 are known. We now simulate 100 
samples of traffic data to conduct a Monte Carlo experiment. Each sample consists of 365 × 24 
hourly traffic counts. Origin-destination demand in each hour is a normal variable with 
parameters specified only for that interval of days. Means for weekends and holidays are 
discounted on the basis of that of weekdays. Figure 3 presents the true traffic flows of mainline 
corridor and ramp respectively in a sample year. Then the observed flows for each hour are 
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generated with true hourly volumes and the previously stated sensor measurement error 
model with the listed parameters.  

 

Figure 3. Daily Traffic Profile of Network 1  

In data aggregation, the total 8760 hourly observations of traffic flow were grouped by the 
hours of a day, so 𝐾 = 24. In Table 2, we present the mean and standard deviation in 
parentheses of estimated 𝛽 using the proposed GMM method in comparison with GLS, a 
straightforward approach but with inconsistent estimator, and TLS, a generic means to handle 
error-in-variable model issue. All the estimates are found without the knowledge of the random 
error ratios. The GLS estimates that are corrected using true 𝜎, crGLS, are also shown at last as 
a benchmark to assess estimation performances. Evidenced by the sample mean and sample 
standard errors, the GMM estimates without knowing 𝜎’s are much more accurate and precise 
compared to ungrouped GLS and TLS. Its precision is only slightly worse than that of crGLS since 
the latter uses true values of parameters 𝜎. 

Table 2. Means (and Standard Deviations) of 𝜷 Estimates 

 𝝁𝟏 𝝁𝟐 𝝁𝟑 𝝁𝟓 

True Value .150 -.150 -.350 -.200 

GMM .151(.005) -.149(.003) -.349(.003) -.199(.300) 

GLS .274(.033) -.100(.018) -.276(.019) -.118(.021) 

TLS .180(.013) -.159(.012) -.331(.007) -.179(.008) 

crGLS .151(.003) -.150(.002) -.350(.002) -.199(.002) 

Concerning the GMM estimation results with different sample sizes, we conduct the same 
experiment using data that span one month, three months, half year and one year, 
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respectively. In Figure 4, the solid lines denote the finite sample distribution of 𝛽 estimates 
normally fitted using repeated simulation experiment results, while the dashed lines are 
asymptotic distribution constructed using all true parameters for the corresponding sample 
sizes. With only one month data, the peak (mean) of estimate differs from the true parameter 
due to a small sample size. As the number of observations grows, expectedly those two 

distributions tend to collide. The shrinkage rate of estimates’ standard deviations is about √𝑇 . 

In order to demonstrate the inferential procedure after obtaining estimates of 𝛽, we pick the 
fiftieth sample among a total of one hundred based on the order of their 𝛽 estimates accuracy, 
measured by the average of relative mean squared errors. First, the generalized moment 
dispersion matrix Ω is computed using estimated σ as shown in Table 3 and illustrated by 
showing its first two blocks that correspond to the first two groups 𝑘 = 1, 2. Then the estimate 
variance-covariance matrix Σ is found and used to find standard errors. Note they are slightly 
different than those of asymptotic distribution shown in Figure 4, because they are computed 
using true parameters instead of one particular sample estimate. Finally, the absolute values of 
test statistics are much larger than critical values at a significance level of .01. Therefore, it is 
statistically significant to reject the null hypotheses that those sensors do not have systematic 
errors.  

 

Figure 4. Distribution of 𝜷 Estimates over Sample Size 𝑻  
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Illustration of Ω Matrix of Network 1 

Table 3. Statistical Inference Results of Network 1  

 Link 1 Link 2 Link 3 Link 5 

Estimate  . 869  1.173  1.538  1.250  

Estimate  . 295  .218  .494  .299  

Standard Error .00199 .00313 . 00368 .00273 
Test Statistic −65.87 55.33 146.31 91.58 

* The critical value of a two-sided Wald test at the a significance level of .01 is 2.58. 

Next we compare the observed hourly counts, corrected flows using LS or MLE in Figure 5 
against true traffic flows. We are particularly interested in comparing the performances of 
correcting flows on mainline versus ramp sensors as well as uncalibrated malfunctioning versus 
calibrated sensors. For the sake of clarity, we randomly select ten percent of sample points to 
show on the scatter plots. From all three graphs, it is manifest that MLE corrected flows with 
relatively accurate estimates of σ are more reliable than those of LS. Although the existing 
random errors of the mainline sensor are higher than that of ramp sensors as shown by green 
dots, the mean squared errors of MLE estimates for mainline sensor is actually smaller as 
shown by blue dots. In short, the correction results on the mainline sensor appear better than 
that on ramp sensors in this example. This is mainly due to the dominant magnitude of mainline 
flows. For calibrated ramp sensor 4, the MLE corrected flows have a similar error scale with the 
original observed counts. It indicates that MLE approach does not have a significant 
improvement on eliminating random error for this particular sensor. This could be ascribed to 
the fact that, unlike mainline link that connects two intermediate nodes, ramp link is only 
associated with one nodal balance equation. 

5.2. Numerical Tests using a General Network 

We performed a series of numerical tests using a general network in Figure 6. It consists of 6 
origin/destination (shown with double circles), 19 intermediate nodes and 50 directed links. 
Instead of having a fixed structure like in unidirectional freeway corridor, this general network 
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is bidirectional with asymmetric flows. One hundred samples of road traffic are simulated by 
randomizing flows on 50 different paths jointly and available for download.2  

 

Figure 5. Corrected Traffic Flow of Network 1  

 

Figure 6. Modified Nguyen-Dupuis Network 

Sensors are deployed on all the links. In order to analyze method’s performance for sensors of 
different levels of systematic measurement errors and to mitigate the effect caused by link 
location in the network (e.g., connecting to one or two intermediate nodes), we divide sensors 
into five groups: (1) 𝜇 = −.3 (severely under-counting), (2) 𝜇 = −.1 (mildly under-counting), (3) 
𝜇 = 0 (accurately counting), (4) 𝜇 = .1 (mildly over-counting), and (5) 𝜇 = .3 (severely over-
counting). Each group is assigned with ten sensors and illustrated using different colors in 

 

2 https://github.com/yudiaspen/sensor-bias-estimation/nguyen-depuis  

https://github.com/yudiaspen/sensor-bias-estimation/nguyen-depuis
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Figure 6. The calibrated sensors are on link 3, 8 and 13. The random error parameter 𝜎 are 
given in Table 4.  

There are three types of measures used to assess the estimation quality. From each data 
sample, estimation error of 𝜇 for sensor 𝑎 is calculated as,  

estimation error𝑎
smpl

= 𝜇̂𝑎
𝑠𝑚𝑝𝑙 − 𝜇, 𝑎 ∈ 𝒜, smpl = 1,… , 𝑆, (5.1) 

Table 4. Random Error Parameters 

Sensor Group 1 1 6 11 16 21 26 31 36 41 46 

True  .20 .05 .20 .30 .35 .40 .05 .15 .40 .20 

Sensor Group 2 2 7 12 17 22 27 32 37 42 47 

True  .30 .10 .30 .20 .40 .05 .20 .30 .30 .40 

Sensor Group 3 3 8 13 18 23 28 33 38 43 48 

True  .05 .15 .10 .25 .15 .05 .40 .35 .15 .15 

Sensor Group 4 4 9 14 19 24 29 34 39 44 49 

True  .15 .20 .40 .10 .30 .10 .25 .05 .35 .15 

Sensor Group 5 5 10 15 20 25 30 35 40 45 50 

True  .10 .25 .05 .10 .40 .40 .30 .35 .05 .10 

where 𝑆 is the number of samples. Average estimation bias and standard error among all 
sensors are expressed as 

average bias =
1

|𝒜|
∑ |

1

𝑆
∑ 𝜇̂𝑎

smpl

𝑆

smpl=1

− 𝜇, | ,

𝑎∈𝒜

 

  (5.2) 

average standard error =
1

|𝒜|
∑ √

1

𝑆 − 1
∑ (𝜇̂𝑎

smpl
−
1

𝑆
∑ 𝜇̂𝑎

smpl

𝑆

smpl=1

− 𝜇)

2
𝑆

smpl=1

.

𝑎∈𝒜

 

5.2.1. Aggregation Group Size 

The first experiment compares those quality measures using different group sizes for 
aggregating observations. In the last example, the aggregation strategy is based on the hour of 
day. This matches the data generation setup that each hourly traffic is sampled from a different 
population. For the current network, without exploiting this feature, we adopt K-means 
clustering technique, a more generic way to partition observations. The clustering approach 
adopted in this paper is based on Euclidean distance between 𝑉’s. Figure 7 demonstrates the 
results of K-means clustering for 𝐾 = 24. The color of a cell represents the probability of each 
hour (column) observations fall in a cluster (row): a warmer color indicates a higher probability 
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and vice versa. Most of clusters tend to scatter over several time periods during daytime, while 
other clusters concentrate on several night hours, since traffic flows at that time are 
considerably lower than that in daytime.  

 

Figure 7. The Distribution of Clusters: 𝑲 = 𝟐𝟒 

 

Figure 8. The Effect of Aggregation Group Size 

We start from 𝐾 = 6 in Figure 8, since estimation problem with fewer group does not allow a 
numerically stable solution due to lack of information. On one hand, as more independent 
equations are supplied, the average standard error drops rapidly as the group size doubles from 
6 to 12. The effect of incorporating new equations gradually vanishes after 𝐾 is greater than 12. 
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On the other hand, having smaller groups enlarges the random error in 𝐶[𝑘] and leads to a 
slight increase in bias from 𝐾 = 24 to 𝐾 = 192. The box plots of individual estimation errors 
echo the observations made on the average measures. They shrink in size and lean towards the 
positive direction as 𝐾 rises.  

5.2.2. Random Error Scale 

In this experiment, we are interested in examining the effect of random error scale on the 
estimates of systematic error ratio. The magnitude of random error is varied by multiplying the 
original value of 𝜎𝑎 given in Table 4 with a scalar, then 

𝜎𝑎
test = ∆𝜎 ∙ 𝜎𝑎. (5.3) 

We consider six scenarios ∆σ = 0, .4, .8, 1.2, 1.6, and 2. Instead of directly showing ∆σ on the 
horizontal axis of the plot in Figure 9, we employ a more straightforward quantity to present 
the scale of random error, which is computed using  

Relative Random Error = ∑ ∑ ∑|𝑈𝑎
(𝑡),smpl

|

𝑇

𝑡=1𝑎∈𝒜

𝑆

smpl=1

∕ ∑ ∑ ∑𝑍𝑎
(𝑡),smpl

.

𝑇

𝑡=1𝑎∈𝒜

𝑆

smpl=1

 

(5.4) 

and linearly related to ∆σ.  

In Figure 9, average standard error has approximately a linear growth as the relative random 
error rises, because average standard error2 ∝ tr(Σ) ∝ tr(Ω) ∝  ∆𝜎2. The operator tr() denotes 
the trace of a matrix. The curve of average bias is much more convex: the “attenuation bias” 

caused by random measurement error in 𝐶[𝑘] becomes a significant problem after relative 
random error exceeds 8%. It is known that in this case 𝛽 is underestimated, so 𝜇 = 1/𝛽 − 1 is 
overestimated as illustrated by the boxes of estimation errors grouped by sensor 𝜇’s.  

5.2.3. Calibrated Sensors 

In this paper, having a calibrated sensor indicates that there is no systematic errors and known 
random error scale. It is manifest that the more calibrated sensors are there before estimation, 
the better the estimates should be. Therefore, we concern about the dependence of estimate 
quality on the number of calibrated sensor. On one hand, the method should be able to find a 
more reliable estimate of systematic error as more sensors are calibrated. On the other hand, it 
should reach a satisfactory level of performance without requiring too many calibrated sensors, 
which would otherwise compromise the purpose of estimation. From Figure 10, we can tell that 
the proposed method excels on both aspects: the bias and standard error decreases as the 
number of calibrated sensors increases; despite a substantial improvement from one sensor to 
two, the marginal gain from more calibrated sensors diminishes as the number of calibrated 
sensors goes beyond two. 
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5.2.4. Unbalanced Flows 

It is not very likely that hourly link flows that connect to the same physical road traffic network 
node has significant imbalance since the effect of shockwaves caused by queuing and 
dequeuing between links are probably averaged out over such a long period of time. However, 
since our estimation model assumes perfect balance, it is still meaningful to examine the 
robustness of the proposed approach against the different levels of flow balance law violation. 
The nodal relation is now expressed as in (2.7) and the true flow is set to be 

𝑍𝑎
(𝑡) = 𝑍𝐵,𝑎

(𝑡) + ∆𝑍√𝑍𝐵,𝑎
(𝑡)𝒵, 𝑎 ∈ 𝒜, (5.5) 

Where 𝑍̅𝐵,𝑎  is the adjusted flow on link 𝑎 that obey balance law precisely, Z is a disturbance 
parameter, and 𝒵 is a standard normally distributed scalar. 

Figure 11 demonstrates that as Z increases from 0 to 1 and flow imbalance ratio rises to 10% 
correspondingly, estimation error of  only gradually increases to .1 on average. This is because 
upon long observation interval (one hour), the aggregation of data further mitigates the impact 
of flow imbalance. The use of K mean clusters also helps obviating potential structural 
imbalance caused by queuing and dequeuing at certain link in a particular hour of day. 

 

Figure 9. The Effect of Random Error Scale 
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Figure 10. The Effect of Calibrated Sensors 

The situation is different for correcting flows. In Figure 12, we plot the scatter points for 
correction quality of a data sample in six scenarios (Z = 0, .2,… ,1) against the difference 
between true and balanced flow, represented by mean squared error (MSE), that is 

𝑀𝑆𝐸(𝑍, 𝑍𝐵) =
1

|𝒜|

1

𝑇
∑ ∑(𝑍𝑎

(𝑡), 𝑍𝐵,𝑎
(𝑡) )

2
,

𝑇

𝑡=1𝑎∈𝒜

 

 (5.6) 

We use 𝑍̂𝐵 to denote the corrected flow when there is no flow imbalance. The shaded areas 
cover 95% points of their own colors, respectively. The dotted lines represent the mean values 

of the MSE. Since corrected flows using imbalanced flow Ẑ still follow balance law strictly, the 
correction error (blue) between that and unbalanced true flow is increasing and reaches around 
200 when Z = 1. But it is worth noting that such error is significantly lower than MSE(Z, ZB). 

In fact, among balanced flows, Ẑ is a better prediction of Z compared to original balanced flows 
Z𝐵 except in the case where flow balance is perfectly held. 
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Figure 11. The Effect of Flow Imbalance on Estimating  

 

Figure 12. The Effect of Flow Imbalance on Correcting 𝐙 

5.2.5. Stochastic Error Generation 

As explained in 2.1. Measurement Errors, the relative strong assumption we impose to obtain 
a linear measurement error model is that the error generation mechanism is consistent in all 
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time intervals and does not depend on the flow variables. We now examine how our model 
performs when such constant error generation assumption does not hold true. 

In this test, we suppose that systematic error  to be a random vector that is normally 
distributed 

 
𝑎
= ̅

𝑎
(1 + ∆𝒵), 𝑎 ∈ 𝒜, (5.7) 

where ̅
𝑎

 is a constant and has the same meaning with  in the fixed linear model,  is a 

multiplier that controls the variation of all 
𝑎

’s and 𝒵 is a standard normal variable. In Figure 

13, the value of  is given from 0 to .3 with a step of .05. The shaded region is the 95% 
probabilistic range of true systematic error ratios resulted from stochastic error generation, 
while the monochromatic region is the 95% probabilistic range of estimated systematic error 
ratios. For those severely malfunctioning sensors, the range of 𝜇̂ is much smaller than , 
indicating a significant effect of variance reduction. For the healthy sensors,  does not vary 
and the range of 𝜇̂ is relatively small. For sensors that are mildly functioning, those two regions 
are approximately the same and the one for 𝜇̂ is slightly tilted up due to estimation bias 
accounted for this additional randomness. Although error generation is stochastic now and our 
model is indeed misspecified, as shown in violin plots of Figure 14, the relative correction error 
of Z is marginal and only reaches 5% when  = .3. In this figure, each diagram is made of 
𝑇 × |𝒜|= 438000 points from a single data sample. Colored shape and boxes insides cover 95% 
and 50% of them respectively. 

 

Figure 13. The Effect of Stochastic Error on Estimating  
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Figure 14. The Effect of Stochastic Error on Correcting 𝐙 

5.3. A Large-Scale Case 

The North Orange County freeway network shown in Figure 15 is to demonstrate the scalability 
of this proposed method. On the OpenStreet map, the graph constituted by blue links is the 
example network. It is consisted of 494 nodes (92 origin/destination nodes and 402 
intermediates nodes) and 674 links (362 mainline segments, 56 interfreeway ramps, 128 on 
ramps, and 128 off ramps). The connectivity data as well as simulated traffic flows and 
observation are available online3. 

Out of the 674 sensors, there are 274 healthy ones with _𝑎 = 0, but only 5 of them are 
recently calibrated, so the number of known elements in  is only 5. Systematic error ratios 

𝑎
 

for the other 400 problematic sensors is randomly drawn from a uniform distribution between 
–.5 and .5. Random error ratios 𝜎𝑎 for all the sensors are randomly drawn from a uniform 
distribution between .05 and .45. We still have the same 365 × 24 hourly data over a year. K-
means clustering is used to group observations with 𝐾 = 24. Figure 16 shows that the 
estimates (blue) of  for 669 sensors of 100 simulated data samples are exceptionally good with 
a very narrow 95% range (red) along the diagonal line which indicates perfect estimation. To 

ensure that the scatter plot for Z is readable, we only present 𝑍̂ in one day from just a single 
sample (16176 data points) in Figure 17, which clearly demonstrates the correction benefits via 

comparing 𝑍̂ (blue) with observed 𝑉 (green). 

 

3 https://github.com/yudiaspen/sensor-bias-estimation/north-orange  

https://github.com/yudiaspen/sensor-bias-estimation/north-orange
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Figure 15. North Orange County Freeway Network 

 

Figure 16.  Estimation Result in North Orange County Network 
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Figure 17. 𝒁 Correction Result in North Orange County Network 
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6. Conclusion 

6.1. Contributions 

In this project, we have developed a GMM-based statistical model to identify sensor 
measurement errors in a network context. We translate nodal flow balance law into structural 
equations, whose first moments are employed to estimate the systematic error ratio of 
sensors. The proposed framework allows a flexible data aggregation strategy, for which the 
traditional MOM and GLS are extreme cases. With such strategy, it is possible, without knowing 
random error ratios, to improve parameter identification by separating observations to more 
groups or to amend estimator consistency by clustering observations to fewer groups. Then we 
leverage the second generalized moments to obtain the estimates of random error ratios. It 
results in a simple quadratic minimization problem with systematic error ratios estimate 
known-a-priori. There are multiple uses of such nuisance parameters: first, to construct the 
optimal weighting matrix in order to refine estimator precision with a fixed sample size; second, 
to infer sensor health by conducting Wald tests; third, to derive MLE estimates for true traffic 
flow given observed counts. 

The major contribution of our work is two-fold. First, the proposed method is capable of 
evaluating the level of data issue and correcting traffic flow data in addition to identifying 
malfunctioning sensors, while most previous sensor health studies concerned only the latter. 
Second, it utilizes network structure of traffic monitoring system, while many previous studies 
that focused on spatial relation gave attention only to those immediately neighboring sensors 
on a corridor. Compared to the works in Sun et al. (2016) and Yin et al. (2017), which also 
exploited the network feature, our method lessens their requirement of flow balance on the 
entire network, which may take several hours to establish. Instead, the way of flow balance 
equations (2.5) being used in our method, only concerns the adjacent sensors at one time and 
requires much less time to establish. Thus, it is possible for users to choose much shorter time 
interval and obtain larger sample within a fixed total observation time. It is also interesting to 
notice that the network flow balance equations are also widely considered in the studies of 
other related estimation problems, for instance, link flow inference and path or O-D flow 
reconstruction (Cascetta, 1984; Hazelton, 2000). In those problems, such knowledge is used to 
infer unknown variables based on unbiased observations. However, in this problem, even the 
bias and random ratios of the observed data are both unknown, thus we creatively construct 
relation between unknown variables, true flows based on such knowledge. 

6.2. Future Extensions 

The estimation method is somewhat exemplary in the sense that it provides a conservative 
statistical approach to a novel problem. It only considers the most well-examined data type, 
traffic counts as well as probably most commonly accepted measurement error and network 
models. In practice, there are multiple types of sensor data available, such as flow, density, and 
speed. Also, other than having proportional measurement errors, an error model that can 
exactly capture the error generation mechanisms of different sensor issues could probably 
result in a better fit of real data. Besides flow balance law based on network graph, other useful 
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transportation domain knowledge including speed-density relationship and macroscopic traffic 
flow models can certainly provide additional information, which should be incorporated to an 
error identification model in the future. Finally, it is also convenient to formulate common 
beliefs on sensor health, such as fewest malfunctioning sensors and least total systematic 
errors, using regularization techniques. In light of the highly adaptable nature of the proposed 
framework, we foresee no obstacle in extending the existing approach using supplementary 
data and knowledge types and alternative model specifications. 

More interesting and important research opportunities are available when we are open to 
discuss technical details of constructing the network graph. The absence of sensors in certain 
links creates a situation that requires non-adjacent links to form a nodal flow balance relation. 
It must be handled with caution in order to avoid unnecessary bias introduced by relating too 
distant sensors. A promising way to do so is to build a new sensor network graph focusing on 
the spatial relation of sensors. Another issue is about sensor aggregation. In this paper, we 
consider a detector station as a sensor. However, it will be practically more useful to monitor 
the health of an individual detection unit in each lane of a multi-lane roadway, so we can 
narrow down to the one that needs calibration. In fact, this challenge can be handled as a 
natural extension of this proposed framework by splitting a road based link into multiple lane 
based links and augmenting a network graph to a multi-graph (multiple arc connecting two 
adjacent nodes). The resulting mathematical model is expected to be larger but only in a linear 
growth rate. Even with the same amount of available data, we may still be able to identify the 
model with only some small loss in estimation reliability.  

6.3. Encountered Data Issues for Caltrans to Note 

Throughout this project, while using PeMS traffic data, we have encountered a serious sensor 
data issue. The coordinates of off-ramp sensors and on-ramp sensors are wrong: All the ramp 
sensors that should be located on the corresponding lanes, have their coordinates on the main 
freeway. In most cases, their location coincides with the corresponding mainline sensors. This 
creates a problem in assigning the ramp sensor to the correct ramp, especially if there are 
multiple ramps in the vicinity of that sensor. For example, as shown in Figure 18, off ramp 
sensor 1123135 should be located on the corresponding ramp, but its location coordinates map 
it on the freeway. Similarly, the onramp sensor 1108604 is also erroneously mapped. 
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Figure 18. Example of Sensors with Incorrect Location Coordinates 
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Data Management 

Products of Research  

The raw data used in this research are open source from OpenStreet Map and PeMS data. The 
script in R programming has been uploaded to NCST data portal for sharing with the scientific 
community for research and teaching purposes.  

Data Format and Content  

The computer script is in R programming, and can be viewed in a text editor. 

Data Access and Sharing  

The raw data used in this research are open source for the public to download without 
restriction. The script in R programming has been uploaded to NCST data portal for sharing with 
the scientific community for research and teaching purposes. Dataset DOI: 
https://doi.org/10.25338/B8TP5Q  

Reuse and Redistribution  

The data can be reused for research and teaching purposes. It should not be used for 
commercial purpose. Usage of the data requires shall be acknowledged with a proper citation 
for the dataset. 

https://doi.org/10.25338/B8TP5Q
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